1) Random variable ξ has the following probability density function: $P(x)= \begin{cases}2 b, & 0 \leq x<1, \\ b, & 1 \leq x \leq 2, \\ 0, & x \notin[0,2] .\end{cases}$

Calculate:
a) coefficient b, and distribution function $F_{\xi}(x)$; (1 point)
b) mathematical expectation $M \xi$, (1 point)
c) variance $D \xi$;
(1 point)
d) probability that random variable ξ will become greater than $5 / 6$. (1 point)
2) Calculate $\int x \cdot e^{\frac{-x^{2}}{2}} \cdot d x$
(1 point)
3) Find the solution of the given matrix equation:

$$
\left(\begin{array}{cc}
1 & -1 \\
3 & 4
\end{array}\right) \cdot X=\left(\begin{array}{ll}
3 & 5 \\
2 & 4
\end{array}\right)
$$

4) Two players \mathbf{A} and \mathbf{B} roll the pair of ordinary dice in turn. Player \mathbf{A} rolls first. To win, a player must sow a sum of dots on the two dice equal to ten. Game is going on until somebody wins. Compute the probability for the second player \mathbf{B} to win.
(2 points)
5) Find the equation of the tangent line and normal line to the given curve $y=x \cdot \ln x$ at the point $x_{0}=1$.
6) Compute the equations of asymptotes for the graph of the function:

$$
\begin{equation*}
y=\frac{x^{2}}{\sqrt{x^{2}+2}}(2 \text { points }) \tag{2points}
\end{equation*}
$$

7) For each of the following points $x=2 ; y=1$ and $x=-1 ; y=-2$ determine whether it is local max point, local min point or neither for the given function:

$$
z=x^{3}+3 x y^{2}-15 x-12 y .
$$

8) Mega Memory Devices, a firm that assembles memory boards for personal computers, buys 60% of its memory chips from supplier A and the remainder from supplier B. Supplier A produces memory chips that are 5% defective, and B produces 10% defective. A memory chip is selected at random from the inventory. A test of the chip shows that it is defective. What is the probability that the chip was supplied by A?
9) For the given function $u=3 x^{1 / 3} y^{2 / 3}$ compute the gradient at point $M=(1 ; 1)$ and the directional derivative of the function at $M(1 ; 1)$ in the direction of the calculated gradient.
10) Solve the given initial value problem:

$$
\left\{\begin{array}{c}
y^{\prime}=\frac{y}{x}+\cos \frac{y}{x} \\
y(1)=0
\end{array}\right.
$$

11) Find the general solution of the following differential equations:
a) $y^{\prime \prime}-y^{\prime}-2 y=0$
(1 point)
b) $y^{\prime \prime}-y^{\prime}-2 y=e^{x}$
(2 point)
c) $y^{\prime \prime}-y^{\prime}-2 y=4 e^{-x}$
(2 points)
