	$\int 2b,$	$0 \le x < 1,$
1) Random variable ξ has the following probability density function	n: $P(x) = \begin{cases} b, \\ b \end{cases}$	$1 \le x \le 2$,
	0,	$x \not\in [0,2].$

Calculate:

a) coefficient b , and distribution function $F_{\varepsilon}(x)$;	(1 <i>point</i>)
---	-------------------

- b) mathematical expectation $M\xi$, (1 point)
- c) variance $D\xi$; (1 point)
- d) probability that random variable ξ will become greater than $\frac{5}{6}$. (1 *point*)

2) Calculate $\int x \cdot e^{\frac{-x^2}{2}} \cdot dx$

(1 point)

3) Find the solution of the given matrix equation:

(1	-1	$\mathbf{v} = \begin{pmatrix} 3 \end{pmatrix}$	5)	
3	4	$\Lambda = 2$	4) [.]	

(2 points)

4) Two players A and B roll the pair of ordinary dice in turn. Player A rolls first. To win, a player must sow a sum of dots on the two dice equal to ten. Game is going on until somebody wins. Compute the probability for the second player B to win.
 (2 points)

5) Find the equation of the tangent line and normal line to the given curve $y = x \cdot \ln x$ at the point $x_0 = 1$.

(2 points)

6) Compute the equations of asymptotes for the graph of the function:

$$y = \frac{x^2}{\sqrt{x^2 + 2}} (2 \text{ points}) \tag{2 points}$$

7) For each of the following points x = 2; y = 1 and x = -1; y = -2 determine whether it is local max point, local min point or neither for the given function:

$$z = x^3 + 3xy^2 - 15x - 12y.$$
 (4 *points*)

8) Mega Memory Devices, a firm that assembles memory boards for personal computers, buys 60% of its memory chips from supplier A and the remainder from supplier B. Supplier A produces memory chips that are 5% defective, and B produces 10% defective. A memory chip is selected at random from the inventory. A test of the chip shows that it is defective. What is the probability that the chip was supplied by A?
(2 points)

9) For the given function $u = 3x^{\frac{1}{3}}y^{\frac{2}{3}}$ compute the gradient at point M = (1;1) and the directional derivative of the function at M(1;1) in the direction of the calculated gradient. (3 *points*)

10) Solve the given initial value problem:

$$\begin{cases} y' = \frac{y}{x} + \cos\frac{y}{x} \\ y(1) = 0 \end{cases}$$

(3 points)

11) Find the general solution of the following differential equations:

a)	y'' - y' - 2y = 0	(1 <i>point</i>)
b)	$y'' - y' - 2y = e^x$	(2 <i>point</i>)
c)	$y'' - y' - 2y = 4e^{-x}$	(2 points)