Kyiv School of Economics

July 2, 2012

Admission exam in Mathematics

(Both versions together)

1. A

Sets A and B are given as: $A=\left\{x \in \mathbb{R}: x^{2}+2 x-3 \geq 0\right\} ; B=\left\{x \in \mathbb{R}: 2+x-x^{2}>0\right\}$.
Find $A \cup B, A \cap B, A \backslash B, B \backslash A$.
B
Sets A and B are given as: $A=\left\{x \in \mathbb{R}: x^{2}+x-6 \geq 0\right\} ; B=\left\{x \in \mathbb{R}: 3+2 x-x^{2}>0\right\}$.
Find $A \cup B, A \cap B, A \backslash B, B \backslash A$.
2. A

Find the minimal distance between the line $y=2 x-3$ and the point of origin $(0,0)$.
B
Find the minimal distance between the line $y=5-\frac{1}{2} x$ and the point of origin $(0,0)$.
3. A
(a) Find such a non-zero matrix \mathbf{X} so that the vector $\mathbf{a}=\mathbf{X b}=\left(\begin{array}{c}m+2 n \\ n+2 k \\ k-2 m\end{array}\right)$, if the vector $\mathbf{b}=\left(\begin{array}{c}m \\ n \\ k\end{array}\right)$
(b) Is matrix \mathbf{X} invertible?

B
(a) Find such a non-zero matrix \mathbf{A} so that the vector $\mathbf{b}=\mathbf{A c}=\left(\begin{array}{c}x-y \\ y-z \\ z-x\end{array}\right)$, if the vector $\mathbf{c}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
(b) Is matrix \mathbf{A} invertible?
4. A

It is known that

$$
\int_{n}^{n+1} f(x) d x=n(n-1) .
$$

Find

$$
\int_{-2}^{3} f(x) d x
$$

B
It is known that

$$
\int_{n}^{n+1} f(x) d x=n^{2}+n
$$

Find

$$
\int_{-1}^{4} f(x) d x
$$

5. A

A random variable X has the following distribution function:

X	-1	-2	0	1
$P(X)$	0.2	0.1	k	0.4

(a) Find k.
(b) Find $\mu(X)$ (the mean of X).
(c) Construct a probability distribution function for the function $Y(X)=X^{2}-1$
(d) Find $P(Y>0)$
(e) Find the $\mu(Y)$. Is it true that $\mu(Y)=Y(\mu(X))$?

B
A random variable Y has the following distribution function:

Y	-1	0	2	3
$P(X)$	0.2	0.5	m	0.1

(a) Find m.
(b) Find $\mu(Y)$ (the mean of Y).
(c) Construct a probability distribution function for the function $Z(Y)=Y^{2}-2 Y$
(d) Find $P(Z>0)$
(e) Find the $\mu(Z)$. Is it true that $\mu(Z)=Z(\mu(Y))$?
6. A

Find the first and second partial derivatives of the following function:

$$
z(x, y)=x^{\frac{1}{3}} y^{\frac{2}{3}}
$$

B Find the first and second partial derivatives of the following function:

$$
z(x, y)=x^{\frac{3}{4}} y^{\frac{1}{4}}
$$

