Kyiv School of Economics

July 2, 2012

Admission exam in Mathematics

(Both versions together)

1. A

Sets A and B are given as: $A = \{x \in \mathbb{R} : x^2 + 2x - 3 \ge 0\}; B = \{x \in \mathbb{R} : 2 + x - x^2 > 0\}$. Find $A \cup B, A \cap B, A \setminus B, B \setminus A$.

В

Sets A and B are given as: $A = \{x \in \mathbb{R} : x^2 + x - 6 \ge 0\}; B = \{x \in \mathbb{R} : 3 + 2x - x^2 > 0\}$. Find $A \cup B, A \cap B, A \setminus B, B \setminus A$.

2. A

Find the minimal distance between the line y = 2x - 3 and the point of origin (0, 0). B

Find the minimal distance between the line $y = 5 - \frac{1}{2}x$ and the point of origin (0, 0).

3. A

(a) Find such a non-zero matrix **X** so that the vector $\mathbf{a} = \mathbf{X}\mathbf{b} = \begin{pmatrix} m+2n\\ n+2k\\ k-2m \end{pmatrix}$, if the vector

$$\mathbf{b} = \begin{pmatrix} m \\ n \\ k \end{pmatrix}$$

(b) Is matrix **X** invertible?

В

(a) Find such a non-zero matrix **A** so that the vector $\mathbf{b} = \mathbf{A}\mathbf{c} = \begin{pmatrix} x - y \\ y - z \\ z - x \end{pmatrix}$, if the vector $\mathbf{c} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

- (b) Is matrix **A** invertible?
- 4. A

It is known that

$$\int_{n}^{n+1} f(x) \, dx = n(n-1)$$

Find

$$\int_{-2}^{3} f(x) \, dx$$

В

It is known that

$$\int_{n}^{n+1} f(x) dx = n^{2} + n.$$
$$\int_{-1}^{4} f(x) dx$$

Find

5. A

A random variable X has the following distribution function:

X	-1	-2	0	1
P(X)	0.2	0.1	k	0.4

- (a) Find k.
- (b) Find $\mu(X)$ (the mean of X).
- (c) Construct a probability distribution function for the function $Y(X) = X^2 1$
- (d) Find P(Y > 0)
- (e) Find the $\mu(Y)$. Is it true that $\mu(Y) = Y(\mu(X))$?

В

A random variable Y has the following distribution function:

Y	-1	0	2	3
P(X)	0.2	0.5	m	0.1

- (a) Find m.
- (b) Find $\mu(Y)$ (the mean of Y).
- (c) Construct a probability distribution function for the function $Z(Y) = Y^2 2Y$
- (d) Find P(Z > 0)
- (e) Find the $\mu(Z)$. Is it true that $\mu(Z) = Z(\mu(Y))$?

6. A

Find the first and second partial derivatives of the following function:

$$z(x,y) = x^{\frac{1}{3}}y^{\frac{2}{3}}$$

B Find the first and second partial derivatives of the following function:

$$z(x,y) = x^{\frac{3}{4}}y^{\frac{1}{4}}$$