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Analysis of return and volatility spillovers in Eastern European stock markets: application of wavelets
by Oleksiy Gorovyy
KSE Program Director:                                                Tom Coupé
In this research we investigate interactions among group of stock markets from the Eastern Europe. We consider return and volatility spillover effect in the region.  We also study how the EU membership influences impact of Russian market on others selected countries before and after joining EU. We apply wavelet analysis in research. 
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Chapter 1

INTRODUCTION
We study volatility of returns in a number of Eastern European emerging stock markets.  In particular, we focus on such aspects as the persistence in volatility, the variability of volatility, volatility clustering and volatility spillover effects among selected markets.  To investigate them we apply a wavelet methodology.  

Analysis of volatility is an important in studying of the nature of stock market return and financial risks.  Being one of the key variables in most models in modern finance volatility has remained a quite popular subject of investigation for both theoretical and empirical research.  Volatility is also employed as a measure of risk and this measure is also used for various practical purposes.  In other words, practical problems require quantifying the financial risk and volatility serves for this.  For example, in order to compute Value at Risk (VaR is commonly employed method of quantifying financial risk) the volatility of equity returns needs to be calculated.  Volatility is needed as an input in portfolio theory which is used by investors and financial managers.  It is also required for the pricing of derivative financial instruments.  In particular a measure of stock price volatility is present in the widely adopted an option pricing formula of Black-Scholes (1973).  Additionally, in order to predict asset return series it is important to obtain accurately confidence intervals.  These intervals may vary in time therefore in this case modeling of volatility of returns is essential (Bollerslev, Engle (1986)). 

We can find a broad overview of different types of volatility models in Poon and Granger (2003).  Models mentioned in their paper were used for forecasting in financial markets.  Most previous studies on volatility and price spillovers are concerned with so called “international transmission mechanism”, Eun (1989).  This phenomenon is observed when shocks arise in one stock market and then are extended to other markets.  It is interesting that these markets are not obligatory neighboring ones.  Another important fact is that time of transferring shocks from market to market has been significantly decreased over the last two decades.  An increasing role of emerging capital markets in transition mechanism is also very important.  

In order to examine short-term fluctuations in stock prices, the VAR methodology uses forecast errors, and the GARCH methodology uses the estimated ARCH error terms.  Both approaches and their many modifications have disadvantages. For example, we observe empirically that bad news has influenced stock markets and their volatility in particular in greater extent than good news. However, it is well known fact that standard ARCH and GARCH models ignore such asymmetries of the volatility. In short, if the absolute values of shocks are equal then their influence on volatility will be the same.  We may also mention other stylized facts connected with discontinuities and clusters of volatility which are weakly explained by these models. Moreover, it is pointed out that models are sensitive to model specification problems.

Taking into account the emergence of new capital markets, liberalization of capital movements as well as fast development of technologies we argue that there is still enough room for deeper research into dynamics of volatility in stock markets.  For example, expansion of broadband Internet has dramatically changed financial world and interconnection of stock markets.  Now all domestic markets can react almost immediately on appearance of new information abroad (Lee (2004)).  It develops ideas to investigate properties of volatility over different time horizons (not only short or long run).  

According to the heterogeneous market hypothesis, which was proposed by Muller et al. (1997), stock market consists of a large number of heterogeneous investors operating at different time-scales (from minutes to years).  Therefore operating at different frequencies market participants influence dynamic of prices and market on the whole in different ways.  Economically, these scales can be associated to the decision taking and portfolio adjustment horizons of investors.  Under such condition time-scale specific information can be obtained by wavelet transformation.

The wavelet analysis and its different variations are now considered as standard techniques by researchers in many fields.  It is extensively used in natural sciences such as physics, signal processing, astronomy, engineering, etc. However wavelet transformation is relatively new in economics and finance. The literature on the subject has been growing rapidly for the last decade since there are a lot of application problems where wavelets could be effectively used.  

Among other Eastern European stock markets Ukrainian market is very important for the region.  Firstly, it is considered as one of the largest emerging markets in Eastern Europe.  Moreover, by Standard & Poor's official classification, it is the largest so-called "frontier market" ("frontier market" is a developing economy with an undeveloped equity market) in the region.  Secondly, under the results of 2007 the capitalization growth of Ukrainian stock market was one of the largest in the world.  Having brought 135% gain Ukrainian stock market index PFTS was the second best performing index after Chinese CSI 300.  Finally and unfortunately, the PFTS index has currently declined by 65% year-to-date.  It is one of the largest declines in the world.  Obviously, such tendency is accompanied by high volatility of stock return.  I expect that wavelet analysis appears more powerful than traditional GARCH and ARCH models because wavelets can effectively deals with spectral peaks and inhomogeneous features of time series.  Also multiresolution decomposition of wavelet analysis is also useful in handling periodicity in stock market returns.  

I believe that my contributions from proposed research work are in the following.  

Firstly, I focus on a sample of Eastern European emerging stock markets starting from 1997 to 2008.  Analysis of literature shows that volatility of emerging markets in the region has not been studied widely.  

Secondly, I examine the issues of return and volatility spillovers of emerging stock markets, as these are important issues to portfolio managers and policy makers.  I hope that results of research could be very useful in light of optimistic expectations of new rapid growth of Ukrainian stock market in 2-3 years. 

Finally, I investigate volatility effects in a wavelet transformation framework which is relatively new approach in econometrics.  So I contribute to the literature.  
Chapter 2

Literature review
In general as it follows from the previous text an object of my research is stock market volatility and the main tool of investigation is wavelet transformation.  Therefore literature review is composed of two parts.  The first part is devoted to literature on financial market volatility and the second part covers wavelets application.  

An investigation of financial volatility has given a rise to a considerable amount of research literature devoted to it.  Being the second moment of the distribution of returns volatility is unobserved phenomena.  Obviously because of this fact considerable attention from academic researchers has been paid to questions about how to measure and model volatility.  

Volatility has been extensively studied over the past thirty years. The most important impulse in research was given after the appearance of the paper of Engle (1982).  One of the main features of the volatility is its variability over time.  Moreover as it indicated in Bollerslev (1986, 1990) financial time series have certain characteristics that determine the properties of financial market volatility.  Some of these properties are fat tail, volatility clustering and leverage effects.  Therefore, econometricians have developed many time-varying volatility models that take into account these properties.  

A number of studies have examined the extent to which volatility from one stock market spills over into other stock markets.  Kanas (2000) analyzed volatility spillovers from stock returns to exchange rate changes.  Despite it was one of the first research on this issue the sample included almost all developed of countries.  Among them are the USA, the UK, Japan, Germany, France and Canada.  For all countries except Germany the author found evidence of spillovers from stock returns to exchange rate changes.  The volatility transmission mechanism between stock and foreign exchange markets for the G-7 countries was studied by Yang and Doong (2004).  They showed that for such countries as France, Italy, Japan and the US there are significant volatility spillovers effect from their stock markets to the foreign exchange markets.  

Among all models developed to forecast volatility the GARCH family of models is the most popular.  Thereupon several papers should be mentioned: Akgiray (1989), Corhay and Rad (1993), Vasilellis and Meade (1996), Walsh and Tsou (1998), Chong et al. (1999),  

Akgiray (1989) focuses on the US markets.  Corhay and Rad (1993) study European capital markets.  Despite they consider different markets there is a common question under consideration.  They question whether autoregressive conditional heteroskedastic (ARCH) models could properly describe stock price fluctuations. The work of Corhay and Rad are also important because it concentrates on markets which are generally much smaller than the US ones.  They look at such countries as France, Germany, Italy, the Netherlands and the UK.  

Wavelet analysis is widely used in different applied fields of science. For example, in signal processing in order to decompose given time series called “signal” into a hierarchical set of approximations and details (multi-resolution analysis).  However, wavelet transformation is relatively new in economics and finance, although the literature on the subject has been growing rapidly for the last decade.  For a detailed description of the use of wavelets for time series analysis refer to Percival and Walden (2000).  The more extended review of application of wavelets is presented in Gencay et al.(2001).

An early application of wavelets in economics and particularly in the financial field can be found in Ramsey and Zhang (1995).  By means of multiresolution decomposition they attempt to study dynamic structures of the foreign exchange rates.  Periodical character of the intra-day stock returns was captured by Сapobianсo (2004).  Fernandez and Luсey (2007) applied wavelet analysis to estimate value at risk for different investment horizons.  Boashash (1987) analyzes business cycles with application of wavelets.  

A very important step was made by Davidson et al. (1998).  Their contribution to the line of research was in connecting the wavelet analysis and a semi-nonparametric regression approaches.  So Pan and Wang (1998) studied the potential stochastic relationship between the S&P 500 index price and S&P dividend yields. The idea of their work was to combine the wavelet analysis with regression one.  

In the frame of our research some papers should be mentioned.  With the help of wavelets Lee (2004) analyzes the relationship between the South Korean and US stock markets.  By means of multi-resolution analysis (MRA), it is determined that there is strong evidence of price and volatility spillovers from developed country to developing country stock markets. In the opposite direction this phenomenon does not observe.  The Gencay, Selcuk and Whitcher (2005) use wavelets with high-frequency financial data to establish so called “asymmetric vertical dependence”.  This is was a new fact about volatility.  It appears that low volatilities at a long and shorter time horizons are usually followed each other.  It does not observed for high volatility.  

To the best of my knowledge, wavelet analysis is not widely used for these purposes with data representing the emerging markets in Eastern Europe.  So our research will contribute to the literature on the study of stock markets in the region.  

Chapter 3

An Introduction to Wavelets
In this chapter an introduction to wavelets is provided.  The general theory of continuous and discrete wavelet transformation presented herein corresponds to the content and notation adopted in the major introductory texts on wavelets and may be found in Daubechies (1992) among others.  

Wavelets are general name for functions with particular properties.  They satisfy certain mathematical requirements and are used in representing data or other functions.  In some way they are similar to periodic functions such as sine and cosine.  However, there is one property that makes wavelets very effective in many applications.  To be more mathematically rigorous we accept the following definition of wavelets here.  
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As it follows from definition the wavelet 
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 damp very rapidly to zero with time.  Namely this property of localization makes wavelets interesting and useful because it allows for handling a variety of nonstationary time series that may change rapidly over time.  By means of wavelet transformation a time series could be presented as a linear combination of wavelet functions.  In other words, it could be decomposed into multi-resolution components (fine and coarse resolution components).  

There are two kinds of wavelets: mother wavelets 
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The former are effectively represents the detail and high-frequency parts of time series, while the latter are good in representing the smooth and low-frequency components.  Therefore, farther wavelets used for the trend components and mother ones for all deviations from the trend.  Unfortunately, except some special case, there is no analytical formula for computing a wavelet function.  Wavelets are usually derived using special two-scale dilation equation.  For a farther wavelet 
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A mother wavelet 
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The coefficients 
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They are the low-pass and high-pass filter coefficients.  As it often happens in practical problems, we deal with time series (sequence of values) rather than continuous function defined over real axis.  In this case we employ short sequences of values called wavelet filters and denoted by 
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The filter coefficients 
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  (j is any non-zero integer).  

Coefficients 
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In empirical analysis four types of orthogonal wavelets are typically used.  They have special names: haar, daublets (d), symmlets (s) and coiflets (c).  Figure 3.1 show these different orthogonal wavelets.  The haar wavelet is a square wave.  Unlike the other wavelets it is not continuous.  It is the only the only orthogonal wavelet with symmetry.  The daublets are asymmetric but the symmlets are constructed to be as nearly symmetric as possible.  The coiflets are also symmetric.  Both haar and daublets have compact support.  It means that they are zero outside a finite interval.  

A continuous time series 
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where  
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Since 
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Index capital J is the number of multi resolution components or scales, and k ranges from 1 to the number of coefficients in the corresponding component.  
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Formula (2.5) is related to both continuous and discrete case.  As was mentioned above discrete case is more typical in applications.  So below we 

Figure 2.1: mother and father orthogonal wavelets

(haar, daublets (d), symmlets (s) and coiflets (c))

Mother wavelets
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Father wavelets
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briefly describe the structure of wavelet coefficients (2.7) in case of discrete wavelet transformation (DWT).  
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The wavelet coefficients are usually arranged in collection from coarse scales to finest 


[image: image70.wmf]÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

è

æ

=

-

1

1

....

d

d

d

s

W

J

J

J

r

r

r

r

,
(2.8)

where 
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Each of vectors 
[image: image75.wmf]1

1

...,

,

,

,

d

d

d

s

J

J

J

r

r

r

r

-

 are called a crystal.  More detail descriptions of crystals can be found in Ramsey (2000).  

Expression (2.5) can be presented in the following form
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where 
[image: image77.wmf]å

=

k

k

J

k

J

J

t

s

t

S

)

(

)

(

,

,

j

,  


[image: image78.wmf]å

=

k

k

J

k

J

J

t

d

t

D

)

(

)

(

,

,

y

,    
[image: image79.wmf]å

-

-

-

=

k

k

J

k

J

J

t

d

t

D

)

(

)

(

,

1

,

1

1

y

,    
[image: image80.wmf]å

=

k

k

k

t

d

t

D

)

(

)

(

,

1

,

1

1

y

.  

So the formula (2.9) present decomposition of time series into orthogonal components 
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 at different scales.  The approximation in (2.9) is called a multi-resolution decomposition (MRD) because terms 
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are components of the time series at different resolutions.  

Chapter 4

DaTA description
4.a Stock Exchange Indexes

In order to conduct proposed research we employ time - series data of stock market daily returns from a sample of the Eastern European countries for more than ten year period (from 1997 to present time).  The sample includes the following markets as 

Ukraine (PFTS: First Securities Trading System);
Russia (RTS: Russia Trade System);
Poland (WIG20: Warsaw Stock Exchange) ;
Czech Republic (PX: Prague Stock Exchange);

Hungary (BUX: Budapest Stock Exchange);
Estonia (OMXT: Tallinn Stock Exchange);

Latvia (OMXR: Riga Stock Exchange);

Lithuania (OMXV: Vilnius Stock Exchange).

Mentioned data are publicly available and can be easily downloaded from open information web portal supported by local trading systems or reliable investment banking company.  For example, in case of Ukraine data can be downloaded from the site of investment bank KINTO (www.kinto.com).  For every country there are about 3000 observations to operate with.  Initial values collected from corresponding resources are raw data and, therefore, can not be used directly for analysis.  First of all, it is so because there are different methodologies used by stock exchanges to construct their indexes.  As a rule detail descriptions of such methodologies are provided by a Stock Exchange and can be also available on their official sites.  Although, in general, procedures of construction indexes are similar to each other, there are some very important distinctions.  One of them is the number of companies included in an index basket.  This number ranges from 5 to 50 depending on the scale of a stock market.  For example, Bratislava Stock Exchange (SAX) includes the smallest number of companies – 5, whereas Russian Trading System (RTS) and Prague Stock Exchange (PX) include 50 stocks.  Calculation of the major Ukrainian indicator (PFTS) is based on 18 most liquid and capitalized equities.  For many reasons stock exchange indexes are considered in financial world as reliable indicators of country’s economic health.  It is notable that the most respectful financial institutions in the world provide regularly information about these indicators, cite them in their reports and news digests.  Unfortunately, data base of international institutions does not include indexes for developing countries under consideration or, at most, historical data are quite short (about one year).  

Comparability of indexes is another issue to be discussed.  Each stock exchange has own history and rules of trading.  For example, although there are general holidays that took place all around the world during of which all stock markets do not work, there are holidays which are typical for every particular country.  Sometimes it happens to investigate relationship between markets located in different time zone.  Obviously we have natural misfit in time of trading.  Fortunately, all selected stock exchanges for current research are located in neighbor time zone therefore we assume that trade on stocks took place simultaneously.  We also have to convert all indexes into the same currency.  It is important because changes in exchange rates influence stock markets.  So we used US dollar as the basic currency for all countries (see historical exchange rates on www.oanda.com).  

As usual stock indexes are calculated with base 100 or 1000.  So to make it more compatible we recalculate them to the same base 100.  There are Figures A1-A8 in Appendix A which show levels of selected indexes.  In general we observe the same pattern for indexes of selected countries.   It means that there is interconnection between them.   
4.b  Stock Exchange Returns

For particular purposes of the research some manipulation with data obtained is required.  Following general practice we use continuously compounded stock returns calculated as the first differences of the natural log.  Based on collected stock market indices we generate daily rates of return from
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where 
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 is a value of corresponding stock exchange index at time t.  

Note that in formula (4.1) we use close-to-close returns since time differences in trades could be neglected in our case.  Using close-to-close returns is common practice while researching on volatility, see Karolyi (1995).  However, studies on non-synchronous trading institutions require calculation of open-to-close returns, see Hamao et al. (1990), Koutmos and Booth (1995).  Figures B1-B8 in Appendix B show calculated index returns.  Table 4.1 provides descriptive statistics of daily returns on each index.  

Based on the calculation we conclude that Russian and Ukrainian stock markets are the most volatile in terms of returns in the region.  Both markets have also the largest returns ranges among all indexes.  On the contrary, Baltic countries have both the lowest values of volatility and range.  Calculated values of means and standard deviation support widely known fact that high risks imply high returns.  In all cases measures of skewness and kurtosis as well as Jarque Bera statistic provide support to the common fact that returns do not behavior as normal distribution.  

Table 4.1: Descriptive statistics of history returns of stock exchange indexes of selected countries

	Country
	Ukraine
	Russia
	Poland
	Czech Rep
	Hungary
	Latvia
	Lithuania
	Estonia

	Index
	PFTS
	RTS
	WIG20
	PX
	BUX
	OMXR
	OMXV
	OMXT

	Min
	-0.181
	-0.212
	-0.142
	-0.162
	-0.180
	-0.147
	-0.102
	-0.070

	Max
	0.200
	0.202
	0.137
	0.154
	0.136
	0.095
	0.110
	0.120

	Median
	0.001
	0.002
	0.000
	0.000
	0.001
	0.000
	0.000
	0.000

	Mean
	0.000
	0.001
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000

	SD
	0.023
	0.029
	0.019
	0.015
	0.019
	0.014
	0.010
	0.010

	Skewness
	-0.461
	-0.408
	-0.204
	0.398
	-0.816
	-1.067
	-0.899
	0.091

	Kurtosis
	10.442
	7.151
	4.200
	16.505
	11.936
	21.560
	20.597
	13.768

	Jarque-Bera test
	12398
	7189
	2229
	41925
	17774
	54881
	49602
	22262

	P-value
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000


4.c  Stock Exchange Squared Returns

Widely-available proxy for volatility is index daily squared return.  We can easily calculate it using data from previous section.
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Table 4.2 provides descriptive statistics of daily squared returns on each index.  Computation shows that we can draw the same conclusions as in case daily returns.  Russian and Ukrainian stock markets are again the most volatile markets among selected countries.  
Figures C1-C8 in Appendix C show calculated index squared returns.  Analysis of these graphs provides us with the following information. 
1) We can easily observe main features of volatility.   The most evident one is clustering of volatility.  We can also capture tails and persistence in volatility.  So volatility varies over time, Engle (1990).  Comparing Figures B1-B8 and Figures C1-C8 we also remark the so called leverage effect, which corresponds to a negative correlation between past returns and future volatility, Bouchaud (2001).  In other words, volatility increases when the stock price or index return falls.  
2) Volatility increases in time of economic  crises. We see it, for example, in case of Russia during 1998. 
3) Volatility increases in period political instability.  The case of Ukraine in 2004 supports this fact.  Ukrainian market faced increasing volatility in end of 2004 when the Orange revolution took place. 

Table 4.2: Descriptive statistics of history of squared returns of stock exchange indexes of selected countries

	Country
	Ukraine
	Russia
	Poland
	Czech Rep
	Hungary
	Latvia
	Lithuania
	Estonia

	Index
	PFTS
	RTS
	WIG20
	PX
	BUX
	OMXR
	OMXV
	OMXT

	Max
	0.040
	0.045
	0.020
	0.026
	0.033
	0.022
	0.012
	0.014

	Median
	0.0001
	0.0002
	0.0001
	0.0000
	0.0001
	0.0000
	0.0000
	0.0000

	Mean
	0.0005
	0.0008
	0.0004
	0.0002
	0.0004
	0.0002
	0.0001
	0.0001

	SD
	0.00185
	0.00247
	0.00088
	0.00101
	0.00132
	0.00099
	0.00047
	0.00043

	Skewness
	10.549
	9.199
	10.117
	15.312
	12.342
	11.469
	15.965
	17.395

	Kurtosis
	157.763
	118.888
	170.685
	304.259
	209.150
	169.380
	322.690
	486.676

	Jarque-Bera test
	2858558
	2008697
	3697766
	14357900
	5431375
	3415803
	12201557
	27952631

	P-value
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000


Chapter 5

Methodology and Empirical Results
5.a Multiresolution Decomposition (MRD)
In chapter 3 we shortly discussed basic theory of wavelets.  We saw that that time series (daily index returns or squared returns) could be presented in a view of multiresolution decomposition, which is the sum of the smooth component and detailed components (2.9). 

We used the Wavelet Toolbox, a collection of functions and special graphic user interface, built in the MATLAB (http://www.mathworks.com/products/wavelet/?BB=1) to perform MRD of our data.  As a basic wavelet function we employed symmlet, labeled as sym8 in Daubechies (1992) with five levels of decomposition.  Although there are many types of wavelets, we choose sym8 because it mainly used as a wavelet basis- function in economic applications, Lee (2004).   
In Appendix D. we present set of figures showing MRD of returns and squared returns.  There 
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 are original time series (raw signal), smooth component (in MatLab notation) and detailed components, respectively. In Appendix E and Appendix F we present detailed descriptive statistics of DWT of returns and squared returns for Ukrainian, Russian and Poland markets.  Besides usual characteristics Tables E and F (last columns) contain so called values of energy concentration function.  By definition, Crowley (2005),  it can be calculated by formular
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where 
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 is elements of detailed components of corresponding MRD, 
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 is original time series (signal).  By analogy with applications in physics, we can say that values of energy concentration function denote the portions of energy in the original signal accounted for by each level of detailed components. This underlines the name of the function.  In calculation of energy function only detailed components are used.  For convenience, all values of this function are collected in two Tables 5.1 and 5.2 for all countries. 
We see from the Table 5.1, that in case of returns time series, components with high frequencies, namely  
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, represent more energy than low-frequency components.  The situation is different in case of squared returns (Tables 5.2).  We observe here that all components bring into raw signal almost the same portions of energy.  This fact could be explained by volatility clustering effect, Ramsey (1998).   
Figures D indicate that that short term fluctuations are the main cause of movements in index returns, because  detailed components 
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 accounts for variations at a time scale 2 and 4 days correspondently (see Table 1 at Crowley (2005)).  

Table 5.1: Values of Energy Concentration function for MRD of index returns, %
	Country
	Ukraine
	Russia
	Poland
	Czech Rep
	Hungary
	Estonia
	Latvia
	Lithuania

	Component
	PFTS
	RTS
	WIG20
	PX
	BUX
	OMXT
	OMXR
	OMXV

	d1
	52.46
	40.16
	48.19
	28.80
	44.09
	31.28
	44.42
	36.05

	d2
	20.41
	27.39
	23.14
	21.61
	27.32
	20.96
	24.24
	21.61

	d3
	11.85
	15.66
	14.86
	15.85
	15.26
	11.63
	15.08
	13.42

	d4
	5.11
	7.65
	5.24
	12.22
	6.42
	6.70
	5.32
	5.81

	d5
	2.95
	3.10
	3.51
	2.62
	2.39
	3.54
	3.10
	3.54

	a5
	7.23
	6.01
	5.02
	18.90
	4.49
	25.86
	7.86
	19.54


Table 5.2: Values of Energy Concentration function for MRD of index squared returns, %
	d1
	30.76
	29.83
	28.21
	14.01
	24.67
	14.00
	30.84
	18.50

	d2
	21.81
	20.46
	17.70
	12.88
	28.91
	13.90
	17.43
	10.12

	d3
	11.19
	12.95
	10.30
	13.51
	9.94
	5.04
	10.85
	17.51

	d4
	6.96
	4.54
	9.69
	14.86
	5.01
	2.96
	3.79
	7.31

	d5
	2.91
	4.04
	4.48
	4.48
	4.79
	1.05
	5.75
	8.02

	a5
	26.33
	28.15
	29.58
	40.23
	26.66
	63.04
	31.31
	38.51


5.b Return and Volatility Spillovers

To investigate stock market spillover effects the innovations in stock markets have to be estimated.  According to the theory if the price fluctuations of market A affect price fluctuations in other markets, say, B and C then the innovation of the market A leads to changes in markets B and C.  In most cases different models from GARH-family have been applied to obtain these innovations.  We will apply alternative methodology.

Firstly we investigate the time-scale properties of stock returns based on the discrete wavelet decomposition. Basics of the multi-resolution analysis were introduced in Chapter 3.  It is not technically difficult to decompose time series data into an orthogonal set of components with different frequencies (Schleicher (2002)) with help of discrete wavelet transformation.  By doing this we can examine the relationships between high-frequency fluctuations in stock returns obtained from real data by means of crystals (2.8).  Analysis of this filtered data helps to investigate transmission of changes among stock markets.  As Lee (2004) showed the relationship between pairs of stock returns can be examined by looking at the first two finest scales.  Speaking in terms of Section 2 notations we have to run two regressions. The first one regresses returns of market A (
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 because as it was shown this components plays crucial role as part of decomposition.  We noted that in case of squared returns detail components contribute almost equally in a time series.  So make results of estimation more precise we should choose those components  
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 which have more power (see Tables 5.1 and 5.2 ).  In our view this approach is more appropriate for emerging and developing markets.  
On the contrary, to analyze spillovers in the opposite direction we regress returns of market B (
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In short the procedure is summarized in the table below.
	Market A and Market B 
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Here we demonstrate procedure on analysis relationship between Russian and Ukrainian Stock Exchange.  

Firstly, we try to find out whether Russian (RTS) stock market movements are transmitted to Ukrainian (PFTS) one. For this purpose we run following regressions.  

The results of these regressions are presented in the left panel of the Table 5.3.
Table 5.3: Regression of index returns at different scales 

PFTS (Ukraine) – RTS (Russia)

	Regression
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	-0.0522

(-1.2341)
	0.7232

(8.1764)
	0.0612

(3.002)
	0.03453

(2.0134)
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(-0.0113)
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(7.6374)
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(0.0082)
	-0.0115

(-2.7765)
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	-0.0039

(-0.0063)
	0.4937

(9.4807)
	0.0003

(0.0000)
	-0.0035

(0.8934)


Note: the figures in the parentheses are t-statistics of the coefficients
We can see from results that for regressions (BA1), (BA2) and (BA3), the slope coefficients a positive and significant. So, Russian market has impact on Ukrainian one.  The slopes in regressions (AB2) and (AB3) are negative that contradict to the common sense. Besides this in (AB3) slope is insignificant.  Slope in regression (AB1) is quite small.  
We have similar situation in case of analysis of volatility spillovers.

Table 5.4: Regression of index squared returns at different scales 

PFTS (Ukraine) – RTS (Russia)

	Regression
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	-0.0312

(-1.452)
	0.813
(5.784)
	0.0332
(2.302)
	0.0672
(1.878)
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(0.0047)
	-0.465

(-3.842)
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	-0.002
(-0.033)
	0.5237

(9.4807)
	0.0002
(0.0000)
	-0.001
(0.7429)


Note: the figures in the parentheses are t-statistics of the coefficients

So we conclude that Russian market is not influenced by Ukrainian one.  

Most countries (except Russia and Ukraine) are members of the European Union.  All they entered EU in 2004.  Using our methodology we investigated how an interaction between them and the most influential market (Russian) in the region changed after 2004.  To do this we divided our time series into two parts for all countries, applied wavelet transformation for them and analyzed impacts from one market to another for both periods.  The main results are highlighted in the concluding part.  In most they coincides with other studies. For example, it is also in agreement with the work of Semko (2008).  
Conclusion
We investigated interactions among group of markets from the Eastern Europe.  In particular we concentrated on analysis of return and volatility spillover effect in the region.  Our research was based on the application of wavelet transformation.  
The following results were obtained.  
· There are strong interactions among chosen markets.
· The most volatile markets are Russian and Ukrainian.

· There had been significant influence of Russian markets on emerging markets in Eastern Europe before these countries joined EU.  It is 
· Russian market influences Ukrainian one but not on the contrary. 
· Influence of Poland market on Ukrainian increased after it became EU member.  

Results obtained are in agreement with other studies.     
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APPENDIX A: Indexes of stock markets
Figures presented in this appendix show historical values of indexes of selected stock markets in the Eastern Europe.   
Figure A1: PFTS index - Ukraine stock exchange

(daily, Oct 03, 1997 - Jan 09, 2009)
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Source: www.kinto.com

Figure A2: RTS index - Russian stock exchange

(daily, Sep 01, 1995 - Jan 12, 2009)
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Source: www.rts.ru

Figure A3: WIG20 index – Poland stock exchange

(daily, Jan 02, 1997 - Jan 09, 2009)
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Source: www.gpw.pl

Figure A4: PX index – Czech Republic stock exchange

(daily, Sep 07, 1993 - Jan 09, 2009)
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Source: www.pse.cz
Figure A5: BUX index – Hungary stock exchange

(daily, Apr 01, 1997 - Jan 09, 2009)
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Source: www.bse.hu

Figure A6: OMXT index – Estonia stock exchange

(daily, Jan 01, 2000 - Jan 12, 2009)

[image: image131.emf]0

100

200

300

400

500

600

700

800

900

24.07.98 01.10.00 10.12.02 17.02.05 28.04.07 06.07.09


Source: www.nasdaqomxnordic.com

Figure A7: OMXR index – Latvia stock exchange

(daily, Jan 01, 2000 - Jan 12, 2009)
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Source: www.nasdaqomxnordic.com

Figure A8: OMXV index – Lithuania stock exchange

(daily, Jan 01, 2000 - Jan 12, 2009)
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Source: www.nasdaqomxnordic.com

APPENDIX B: STOCK MARKET RETURNS
Figures presented in this appendix show histories of stock market returns for selected countries in the Eastern Europe.  
Figure B1: PFTS history of returns - Ukraine stock exchange

(daily, Oct 03, 1997 - Jan 09, 2009)
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Figure B2: RTS history of returns - Russian stock exchange

(daily, Sep 01, 1995 - Jan 12, 2009)
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Figure B3: WIG20 history of returns – Poland stock exchange

(daily, Jan 02, 1997 - Jan 09, 2009)
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Figure B4: PX history of returns – Czech Republic stock exchange

(daily, Sep 07, 1993 - Jan 09, 2009)
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Figure B5: BUX history of returns – Hungary stock exchange

(daily, Apr 01, 1997 - Jan 09, 2009)
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Figure B6: OMXT history of returns – Estonia stock exchange

(daily, Jan 01, 2000 - Jan 12, 2009)
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Figure B7: OMXR history of returns – Latvia stock exchange

(daily, Jan 01, 2000 - Jan 12, 2009)
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Figure B8: OMXV history of returns – Lithuania stock exchange

(daily, Jan 01, 2000 - Jan 12, 2009)
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APPENDIX C: SQUARED STOCK MARKET RETURNS
Figures presented in this appendix show histories of squared stock market returns for selected countries in the Eastern Europe.  

Figure C1: PFTS history of squared returns - Ukraine stock exchange

(daily, Oct 03, 1997 - Jan 09, 2009)
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Figure C2: RTS history of squared returns - Russian stock exchange

(daily, Sep 01, 1995 - Jan 12, 2009)

[image: image143.png]0.05

0.04

0.03

0.02

0.01

0.00 +
07.03.94 15.05.96 240798 01.10.00 10.12.02 17.02.05 28.04.07 06.07.09




Figure C3: WIG20 history of squared returns – Poland stock exchange

(daily, Jan 02, 1997 - Jan 09, 2009)
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Figure C4: PX history of squared returns – Czech Republic stock exchange

(daily, Sep 07, 1993 - Jan 09, 2009)
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Figure C5: BUX history of squared returns – Hungary stock exchange

(daily, Apr 01, 1997 - Jan 09, 2009)
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Figure C6: OMXT history of squared returns – Estonia stock exchange

(daily, Jan 01, 2000 - Jan 12, 2009)
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Figure C7: OMXR history of squared returns – Latvia stock exchange

(daily, Jan 01, 2000 - Jan 12, 2009)
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Figure C8: OMXV history of squared returns – Lithuania stock exchange

(daily, Jan 01, 2000 - Jan 12, 2009)
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APPENDIX D: MULTIRESOLUTION DECOMPOSITION (MRD) OF RETURNS AND SQUARED RETURNS
Figures presented in this appendix show multiresolution decomposition (MRD) of returns and squared returns.  We used the Wavelet Toolbox, a collection of functions and special graphic user interface, built in the MATLAB.  As a basic wavelet function we employed symmlet, labeled as sym8 in Daubechies (1992) with five levels of decomposition.  Here 
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, 
[image: image151.wmf]5
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,  
[image: image152.wmf]i

d

 are original time series (raw signal), smooth component (in MatLab notation) and detailed components, respectively.  
Figure D1:  MRD of PFTS returns and squared returns
(daily, Oct 03, 1997 - Jan 09, 2009)
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Figure D2:  MRD of RTS returns and squared returns

(daily, Sep 01, 1995 - Jan 12, 2009)
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Figure D3: MRD of WIG20 returns and squared returns

(daily, Jan 02, 1997 - Jan 09, 2009)
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Figure D4:  MRD of PX returns and squared returns

(daily, Sep 07, 1993 - Jan 09, 2009)
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Figure D5: MRD of BUX returns and squared returns

(daily, Apr 01, 1997 - Jan 09, 2009)
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Figure D6:  MRD of OMXT returns and squared returns

(daily, Jan 01, 2000 - Jan 12, 2009)
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Figure D7: MRD of OMXR returns and squared returns

(daily, Sep 07, 1993 - Jan 09, 2009)
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Figure D8: MRD of OMXV returns and squared returns

(daily, Sep 07, 1993 - Jan 09, 2009)
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APPENDIX E: DESCRIPTIVE STATISTICS OF DISCRETE WAVELET TRANSFORMATION (DWT) OF RETURNS
Tables presented in this appendix contain descriptive statistics for the corresponding levels of decompositions of each return series.  As a basic wavelet function we employed symmlet, labeled as sym8 in Daubechies (1992) with five levels of decomposition.  Here 
[image: image169.wmf]s
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d

 are original time series (raw signal), smooth component (in MatLab notation) and detailed components, respectively.  
Table E1: Descriptive statistics of DWT of returns

PFTS returns - Ukraine stock exchange

	
	Min
	Max
	Median
	Mean
	SD
	Energy, %

	a5
	-0.1224
	0.0090
	-0.0017
	-0.003
	0.033
	7.23

	d1
	-0.1730
	0.1567
	0.000
	0.000
	0.024
	52.46

	d2
	-0.0775
	0.1335
	0.000
	0.001
	0.021
	20.41

	d3
	-0.1212
	0.0937
	0.000
	0.000
	0.022
	11.85

	d4
	-0.0654
	0.0730
	0.000
	0.002
	0.020
	5.11

	d5
	-0.0338
	0.1105
	0.002
	0.003
	0.021
	2.95


RTS returns – Russian stock exchange

	
	Min
	Max
	Median
	Mean
	SD
	Energy, %

	a5
	-0.2036
	0.00989
	0.0037
	0.0012
	0.0375
	6.0133

	d1
	-0.2390
	0.1301
	0.0000
	0.0000
	0.0257
	40.1632

	d2
	-0.1729
	0.1898
	0.0000
	0.0000
	0.0299
	27.3979

	d3
	-0.1259
	0.1266
	0.0000
	0.0000
	0.0317
	15.6689

	d4
	-0.0869
	0.1478
	0.0015
	0.0015
	0.0308
	7.6508

	d5
	-0.1028
	0.0957
	0.0013
	0.0012
	0.0270
	3.1039


WIG20 returns - Poland stock exchange

	
	Min
	Max
	Median
	Mean
	SD
	Energy, %

	a5
	-0.0597
	0.0576
	0.0061
	0.0049
	0.0223
	5.0299

	d1
	-0.1195
	0.1307
	0.0000
	0.0000
	0.0188
	48.1939

	d2
	-0.0722
	0.0784
	0.0000
	0.0000
	0.0184
	23.1476

	d3
	-0.0815
	0.0773
	0.0019
	0.012
	0.0206
	14.8653

	d4
	-0.1058
	0.0472
	0.0000
	-0.0024
	0.0169
	5.2482

	d5
	-0.0406
	0.0607
	-0.0024
	0.0000
	0.0191
	3.5151


APPENDIX F: DESCRIPTIVE STATISTICS OF DISCRETE WAVELET TRANSFORMATION (DWT) OF SQUARED RETURNS

Tables presented in this appendix contain descriptive statistics for the corresponding levels of decompositions of each squared return series.   As a basic wavelet function we employed symmlet, labeled as sym8 in Daubechies (1992) with five levels of decomposition.  Here 
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 are original time series (raw signal), smooth component (in MatLab notation) and detailed components, respectively.  

Table F1: Descriptive statistics of DWT of squared returns
PFTS squared returns - Ukraine stock exchange

	
	Min
	Max
	Median
	Mean
	SD
	Energy, %

	a5
	0.0002
	0.0221
	0.0016
	0.0033
	0.0042
	26.3394

	d1
	-0.0172
	0.0157
	0.0000
	0.0000
	0.0016
	30.7663

	d2
	-0.0176
	0.0159
	0.0000
	0.0000
	0.0019
	21.8154

	d3
	-0.0141
	0.121
	0.0000
	0.0000
	0.0019
	11.1992

	d4
	-0.0097
	0.0097
	0.0000
	0.0000
	0.0020
	6.9632

	d5
	-0.0097
	0.0049
	-0.0002
	0.0003
	0.0018
	2.9165


RTS squared returns – Russian stock exchange

	
	Min
	Max
	Median
	Mean
	SD
	Energy, %

	a5
	-0.0003
	0.0428
	0.0024
	0.0042
	0.0061
	28.1553

	d1
	-0.0317
	-0.0193
	0.0000
	0.0000
	0.0020
	29.8363

	d2
	-0.0236
	0.0203
	0.0000
	-0.0001
	0.0023
	20.4601

	d3
	-0.0315
	0.0066
	0.0000
	-0.0003
	0.0026
	12.9526

	d4
	-0.0080
	0.01323
	0.0000
	0.0003
	0.0021
	4.5491

	d5
	-0.0125
	0.0126
	-0.0002
	-0.0002
	0.0028
	4.0465


WIG20 squared returns - Poland stock exchange

	
	Min
	Max
	Median
	Mean
	SD
	Energy, %

	a5
	-0.0007
	0.0118
	0.0017
	0.0021
	0.0019
	29.5895

	d1
	-0.0076
	0.0078
	0.0000
	0.0000
	0.0007
	28.2153

	d2
	0.0125
	0.0067
	0.0000
	0.0000
	0.0008
	17.7042

	d3
	-0.0037
	0.0112
	0.0000
	0.0000
	0.0009
	10.3062

	d4
	0.0133
	0.0021
	0.0000
	-0.0001
	0.0012
	9.6995

	d5
	-0.0057
	0.0041
	0.0000
	-0.0001
	0.0011
	4.4853
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